CUET-General Aptitude-06/05/2025

CUET-General Aptitude-06/05/2025

Dear Students, we welcome you in our post CUET-General Aptitude-06/05/2025.

In all previous years’ exams, there is at least one question on ‘algebraic expressions’.

Today’s post will demonstrate how to solve questions on algebraic expressions:

Q 3700) If  p=0, the value of  p(p² +p +1) +5 would be

Ans: 5

Solution: (0)3  + (0)² + (0) +5 = 5

Q 3701) The sum of

-3zx

+9zx -4y 

-3zx +5x  is

Ans: +3zx +5x -4y

Q 3702) The subtract -4y² +6y -3 from +8y² +5x -3y is

Ans: +12y² +5x -9y

Q 3703) If  p=3, the value of 3p(4p -5) + 3 would be

Ans: 66

Solution: 12 (3)² -15(3) +3

=12×9 -15 x 3  +3

=108 -45 +3 =66

Q 3704) If  p=1, the value of  p(p² +p +1) +5 would be

Ans: 8

Solution: (1)3  + (1 )² + (1 ) +5

= 1 +1 +1 +5 = 8

Q 3705) If  p=-1, the value of  p(p² +p +1) +5 would be

Ans: 4

Solution: (-1)3  + (-1)² + (-1) +5

= -1 + 1  -1 + 5

= -1 + 5 =4

Q 3706) If  p=0, the value of  p(p² +p +1) +5 would be

Ans: 5

Solution: (0)3  + (0)² + (0) +5 = 5

Area of a triangle

Q 3707) In the given figure ΔPQR is isosceles with PQ = PR = 7.5 cm and QR = 9 cm. The height PS from P to QR is 6 cm, then the area of PQR is …

CUET-General Aptitude-06/05/2025

Ans: Area of ΔPQR is 27 cm²

Solution: Area of ΔPQR with base QR = 1/2 x base x height

= 1/2 x QR x PS = 1/2 x 9 x 6 = 27 cm²

Q 3708) In the given figure ΔPQR is isosceles with PQ = PR = 7.5 cm and QR = 9 cm. The height RT from R  to PQ  is …

CUET-General Aptitude-06/05/2025

Ans: 7.2 cm

Solution: Area of ΔPQR with base PQ = 1/2 x base x height = 1/2 x PQ x RT

27 cm² = 1 /2 x 7.5 cm x RT

RT = 27 cm² x 2 / 7.5 cm = 7.2 cm

Thank you for watching the post!
General Aptitude
This post ‘CUET2025-General Aptitude-06/05/2025’ is important for CUET (UG) General Aptitude Test Preparation.

इस वेबसाइट को हमनें बड़ी मेहनत से बनाया है। यह आपके लिए बिल्कुल निःशुल्क है। Pleasev Leave a comment box में अपने comment ज़रूर लिखेंI

माननीय गुरुजनों से निवेदन है, इस पोस्ट को अपने स्टूडेंट्स को जरुर रिकमेंड करें। ख़ासकर उन स्टूडेंट्स को जो होनहार हैं, लेकिन आर्थिक तंगी के कारण सही कोचिंग नहीं मिल पाने के कारण आगे नहीं बढ़ पातेI यह उनके लिए बिल्कुल नि:शुल्क हैI
Published By: Vimal Kumar Tulsyan
Organisation: CUET NOW
Address: A-332, Pocket-00, Sector-2, Rohini, Delhi-110085
Website: cuetnow.com
URL: https://cuetnow.com
Email: [email protected]
Mobile No. 9910848324

One comment

Leave a comment

Your email address will not be published. Required fields are marked *